### organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

### N-Benzoyl-4-chlorobenzenesulfonamide

## P. A. Suchetan,<sup>a</sup> B. Thimme Gowda,<sup>a</sup>\* Sabine Foro<sup>b</sup> and Hartmut Fuess<sup>b</sup>

<sup>a</sup>Department of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and <sup>b</sup>Institute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany Correspondence e-mail: gowdabt@yahoo.com

Received 22 February 2010; accepted 1 March 2010

Key indicators: single-crystal X-ray study; T = 299 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.044; wR factor = 0.125; data-to-parameter ratio = 13.3.

The asymmetric unit of the title compound,  $C_{13}H_{10}CINO_3S$ , contains two independent molecules. The molecules have C-S-N-C torsion angles of -70.0(2) and  $61.3(2)^{\circ}$  for molecules 1 and 2, respectively. The dihedral angles between the sulfonyl benzene rings and the  $-SO_2-NH-C-O$  segments are 72.0(1) and 77.3(1)° for molecules 1 and 2, respectively, and the dihedral angles between the sulfonyl and the benzoyl benzene rings are 62.8(1) and  $78.6(1)^{\circ}$ , respectively. In the crystal, molecules 1 and 2 are linked by pairs of  $N-H\cdots O$  hydrogen bonds, forming inversion dimers.

#### **Related literature**

For background to our study of the effect of ring and sidechain substituents on the crystal structures of *N*-aromatic sulfonamides and for similar structures, see: Gowda *et al.* (2009; 2010); Suchetan *et al.* (2009).



(2) Å

(1)°

(1)°

(2)°

#### **Experimental**

Crystal data

| C12H10CINO2S               | c = 12.512       |
|----------------------------|------------------|
| $M_r = 295.73$             | $\alpha = 91.15$ |
| Triclinic, $P\overline{1}$ | $\beta = 93.53$  |
| a = 9.138 (1) Å            | $\nu = 107.40$   |
| b = 12.026 (2) Å           | V = 1308.5       |
|                            |                  |

Z = 4Cu  $K\alpha$  radiation  $\mu = 4.12 \text{ mm}^{-1}$ 

#### Data collection

| Enraf-Nonius CAD-4                     |
|----------------------------------------|
| diffractometer                         |
| Absorption correction: $\psi$ scan     |
| North et al., 1968                     |
| $T_{\min} = 0.233, \ T_{\max} = 0.290$ |
| 9165 measured reflections              |

#### Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.044 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.125 & \text{independent and constrained} \\ S &= 1.05 & \text{refinement} \\ 4655 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.34 \text{ e } \text{ Å}^{-3} \\ 350 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.34 \text{ e } \text{ Å}^{-3} \\ 2 \text{ restraints} \end{split}$$

## Table 1Hydrogen-bond geometry (Å, $^{\circ}$ ).

| $D - H \cdot \cdot \cdot A$ | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |  |
|-----------------------------|----------|-------------------------|--------------|---------------------------|--|
| $N1-H1N\cdotsO1^{i}$        | 0.84 (2) | 2.16 (2)                | 2.967 (3)    | 161 (3)                   |  |
| $N2-H2N\cdots O4^{n}$       | 0.83 (2) | 2.15 (2)                | 2.962 (3)    | 164 (3)                   |  |

T = 299 K

 $R_{\rm int} = 0.044$ 

 $0.50 \times 0.40 \times 0.40$  mm

4655 independent reflections 3966 reflections with  $I > 2\sigma(I)$ 

3 standard reflections every 120 min intensity decay: 2.0%

Symmetry codes: (i) -x, -y, -z; (ii) -x, -y + 1, -z + 1.

Data collection: *CAD-4-PC* (Enraf–Nonius, 1996); cell refinement: *CAD-4-PC*; data reduction: *REDU4* (Stoe & Cie, 1987); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

PAS thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FK2014).

#### References

- Enraf-Nonius (1996). *CAD-4-PC*. Enraf-Nonius, Delft, The Netherlands. Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). *Acta Cryst.* E65,
- o2516. Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66. Submitted. [NG2736]
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.
- Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, 03156.

Acta Cryst. (2010). E66, 0766 [doi:10.1107/S160053681000783X]

#### N-Benzoyl-4-chlorobenzenesulfonamide

#### P. A. Suchetan, B. T. Gowda, S. Foro and H. Fuess

#### Comment

Diaryl acylsulfonamides are known as potent antitumor agents against a broad spectrum of human tumor xenografts in nude mice. As a part of studying the effect of ring and the side chain substituents on the crystal structures of *N*-aromatic sulfonamides (Gowda *et al.*, 2009; 2010; Suchetan *et al.*, 2009), the structure of *N*-(benzoyl)4-chlorobenzenesulfonamide (I) has been determined. The asymmetric unit of the structure contains two independent molecules (Fig.1). The conformations of the N—H bonds in the C—SO<sub>2</sub>—NH—C(O) segments are *anti* to the C=O bonds, similar to those observed in *N*-(benzoyl)benzenesulfonamide (II) (Gowda *et al.*, 2009), *N*-(benzoyl)2-chlorobenzenesulfonamide (III) (Gowda *et al.*, 2009).

The molecules are twisted at the *S* atoms with the torsional angles of -70.0 (2)° and 61.3 (2)° in the two independent molecules. The dihedral angles between the sulfonyl benzene rings and the  $-SO_2$ —NH—C—O segments are 72.0 (1)° (molecule 1) and 77.3 (1)° (molecule 2), compared to the values of 86.5 (1) in (II), 87.3 (1)° in (III) and 75.7 (1)° in (IV). Furthermore, the dihedral angles between the benzene rings are 62.8 (1)° (molecule 1) and 78.6 (1)° (molecule 2), compared to the values of 80.3 (1) in (II), 73.3 (1)° in (III) and 68.6 (1)° in (IV). The packing of molecules linked by N—H···O(S) hydrogen bonds (Table 1) is shown in Fig. 2.

#### **Experimental**

The title compound was prepared by refluxing a mixture of benzoic acid, 4-chlorobenzenesulfonamide and phosphorous oxy chloride for 5 h on a water bath. The resultant mixture was cooled and poured into ice cold water. The solid, *N*-(benzoyl)4-chlorobenzenesulfonamide obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. The filtered and dried compound was recrystallized to the constant melting point.

Prism like colourless single crystals of the title compound used in X-ray diffraction studies were grown from a slow evaporation of its toluene solution at room temperature.

#### Refinement

The H atoms of the NH groups were located in a difference map and later restrained to the distance N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the U<sub>eq</sub> of the parent atom).

Figures



Fig. 1. Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.

### N-Benzoyl-4-chlorobenzenesulfonamide

| Crystal data                                        |                                                |
|-----------------------------------------------------|------------------------------------------------|
| C <sub>13</sub> H <sub>10</sub> ClNO <sub>3</sub> S | Z = 4                                          |
| $M_r = 295.73$                                      | F(000) = 608                                   |
| Triclinic, <i>P</i> T                               | $D_{\rm x} = 1.501 {\rm ~Mg~m^{-3}}$           |
| Hall symbol: -P 1                                   | Cu K $\alpha$ radiation, $\lambda = 1.54180$ Å |
| a = 9.138(1) Å                                      | Cell parameters from 25 reflections            |
| b = 12.026 (2) Å                                    | $\theta = 6.3 - 20.7^{\circ}$                  |
| c = 12.512 (2) Å                                    | $\mu = 4.12 \text{ mm}^{-1}$                   |
| $\alpha = 91.15 (1)^{\circ}$                        | T = 299  K                                     |
| $\beta = 93.53 (1)^{\circ}$                         | Prism, colourless                              |
| $\gamma = 107.40 \ (2)^{\circ}$                     | $0.50\times0.40\times0.40~mm$                  |
| $V = 1308.5 (3) \text{ Å}^3$                        |                                                |

#### Data collection

| Enraf–Nonius CAD-4<br>diffractometer                             | 3966 reflections with $I > 2\sigma(I)$                                    |
|------------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                         | $R_{\rm int} = 0.044$                                                     |
| graphite                                                         | $\theta_{\text{max}} = 67.0^{\circ}, \ \theta_{\text{min}} = 3.5^{\circ}$ |
| $\omega/2\theta$ scans                                           | $h = -10 \rightarrow 10$                                                  |
| Absorption correction: $\psi$ scan<br>North <i>et al.</i> , 1968 | $k = -14 \rightarrow 14$                                                  |
| $T_{\min} = 0.233, T_{\max} = 0.290$                             | $l = -14 \rightarrow 14$                                                  |
| 9165 measured reflections                                        | 3 standard reflections every 120 min                                      |
| 4655 independent reflections                                     | intensity decay: 2.0%                                                     |

#### Refinement

| Refinement on $F^2$        | Secondary atom site location: difference Fourier map     |
|----------------------------|----------------------------------------------------------|
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |

| $R[F^2 > 2\sigma(F^2)] = 0.044$                                | H atoms treated by a mixture of independent and constrained refinement                                      |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| $m P(F^2) = 0.125$                                             | $w = 1/[\sigma^2(F_0^2) + (0.0517P)^2 + 0.515P]$                                                            |
| WR(F) = 0.125                                                  | where $P = (F_0^2 + 2F_c^2)/3$                                                                              |
| <i>S</i> = 1.05                                                | $(\Delta/\sigma)_{\rm max} < 0.001$                                                                         |
| 4655 reflections                                               | $\Delta \rho_{max} = 0.34 \text{ e} \text{ Å}^{-3}$                                                         |
| 350 parameters                                                 | $\Delta \rho_{min} = -0.34 \text{ e } \text{\AA}^{-3}$                                                      |
| 2 restraints                                                   | Extinction correction: SHELXL97 (Sheldrick, 2008),<br>$Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ |
| Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0104 (5)                                                                          |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

| Cl1 0.13114 (11) 0.65487 (7) 0.19920 (7) 0.09    | 951 (3) |
|--------------------------------------------------|---------|
|                                                  |         |
| S1 0.12434 (7) 0.19435 (5) -0.03688 (6) 0.05     | 571 (2) |
| O1 -0.02885 (19) 0.11806 (14) -0.03785 (19) 0.07 | 766 (6) |
| O2 0.1928 (2) 0.22241 (16) -0.13596 (16) 0.07    | 727 (5) |
| O3 0.45459 (19) 0.26268 (14) 0.02647 (17) 0.06   | 589 (5) |
| N1 0.2241 (2) 0.12840 (16) 0.03850 (19) 0.05     | 566 (5) |
| H1N 0.172 (3) 0.0617 (17) 0.054 (2) 0.06         | 58*     |
| C1 0.1337 (2) 0.32370 (18) 0.0343 (2) 0.05       | 515 (5) |
| C2 0.0252 (3) 0.3229 (2) 0.1058 (2) 0.06         | 533 (7) |
| H2 -0.0481 0.2532 0.1196 0.07                    | 76*     |
| C3 0.0251 (3) 0.4250 (2) 0.1567 (2) 0.06         | 696 (7) |
| H3 -0.0484 0.4255 0.2047 0.08                    | 34*     |
| C4 0.1352 (3) 0.5262 (2) 0.1355 (2) 0.06         | 625 (6) |
| C5 0.2456 (3) 0.5282 (2) 0.0662 (2) 0.06         | 529 (7) |
| H5 0.3200 0.5980 0.0543 0.07                     | 75*     |
| C6 0.2461 (3) 0.42605 (19) 0.0140 (2) 0.05       | 574 (6) |
| Нб 0.3202 0.4259 -0.0337 0.06                    | 59*     |
| C7 0.3829 (2) 0.16862 (19) 0.0569 (2) 0.05       | 520 (5) |
| C8 0.4541 (2) 0.09067 (19) 0.11647 (19) 0.04     | 491 (5) |
| C9 0.6099 (3) 0.1097 (2) 0.1104 (2) 0.06         | 653 (7) |
| H9 0.6662 0.1704 0.0708 0.0708                   | 78*     |

| C10 | 0.6821 (3)   | 0.0392 (3)   | 0.1626 (3)   | 0.0761 (8) |
|-----|--------------|--------------|--------------|------------|
| H10 | 0.7867       | 0.0516       | 0.1570       | 0.091*     |
| C11 | 0.6022 (3)   | -0.0483 (2)  | 0.2222 (3)   | 0.0710 (7) |
| H11 | 0.6523       | -0.0952      | 0.2577       | 0.085*     |
| C12 | 0.4478 (3)   | -0.0677 (3)  | 0.2304 (3)   | 0.0768 (8) |
| H12 | 0.3932       | -0.1272      | 0.2719       | 0.092*     |
| C13 | 0.3737 (3)   | 0.0014 (2)   | 0.1767 (2)   | 0.0667 (7) |
| H13 | 0.2685       | -0.0125      | 0.1813       | 0.080*     |
| Cl2 | 0.09586 (10) | 1.12238 (7)  | 0.31722 (8)  | 0.0928 (3) |
| S2  | 0.15335 (8)  | 0.68980 (5)  | 0.55894 (6)  | 0.0660 (2) |
| O4  | 0.0012 (2)   | 0.61359 (16) | 0.5643 (2)   | 0.0871 (7) |
| 05  | 0.2464 (3)   | 0.72946 (19) | 0.65492 (17) | 0.0895 (7) |
| O6  | 0.4541 (2)   | 0.75873 (16) | 0.47147 (19) | 0.0794 (6) |
| N2  | 0.2341 (3)   | 0.61526 (18) | 0.48162 (19) | 0.0623 (5) |
| H2N | 0.171 (3)    | 0.5535 (19)  | 0.456 (2)    | 0.075*     |
| C14 | 0.1436 (3)   | 0.81131 (19) | 0.4870 (2)   | 0.0544 (6) |
| C15 | 0.0225 (3)   | 0.7997 (2)   | 0.4114 (2)   | 0.0640 (7) |
| H15 | -0.0496      | 0.7272       | 0.3963       | 0.077*     |
| C16 | 0.0090 (3)   | 0.8952 (2)   | 0.3589 (2)   | 0.0675 (7) |
| H16 | -0.0714      | 0.8881       | 0.3073       | 0.081*     |
| C17 | 0.1157 (3)   | 1.0018 (2)   | 0.3832 (2)   | 0.0605 (6) |
| C18 | 0.2376 (3)   | 1.0149 (2)   | 0.4571 (2)   | 0.0645 (7) |
| H18 | 0.3097       | 1.0876       | 0.4713       | 0.077*     |
| C19 | 0.2515 (3)   | 0.9182 (2)   | 0.5102 (2)   | 0.0602 (6) |
| H19 | 0.3328       | 0.9253       | 0.5610       | 0.072*     |
| C20 | 0.3804 (3)   | 0.6593 (2)   | 0.4480 (2)   | 0.0595 (6) |
| C21 | 0.4389 (3)   | 0.5793 (2)   | 0.3827 (2)   | 0.0550 (6) |
| C22 | 0.3646 (3)   | 0.4623 (2)   | 0.3640 (3)   | 0.0712 (7) |
| H22 | 0.2712       | 0.4285       | 0.3932       | 0.085*     |
| C23 | 0.4278 (4)   | 0.3951 (3)   | 0.3022 (3)   | 0.0816 (9) |
| H23 | 0.3760       | 0.3163       | 0.2896       | 0.098*     |
| C24 | 0.5657 (3)   | 0.4427 (3)   | 0.2590 (3)   | 0.0744 (8) |
| H24 | 0.6075       | 0.3966       | 0.2173       | 0.089*     |
| C25 | 0.6410 (4)   | 0.5582 (3)   | 0.2777 (3)   | 0.0829 (9) |
| H25 | 0.7353       | 0.5911       | 0.2493       | 0.100*     |
| C26 | 0.5780 (3)   | 0.6261 (2)   | 0.3385 (3)   | 0.0782 (8) |
| H26 | 0.6299       | 0.7051       | 0.3502       | 0.094*     |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$   | $U^{13}$     | $U^{23}$    |
|-----|-------------|-------------|-------------|------------|--------------|-------------|
| C11 | 0.1252 (7)  | 0.0788 (5)  | 0.0934 (6)  | 0.0542 (5) | -0.0124 (5)  | -0.0192 (4) |
| S1  | 0.0512 (3)  | 0.0391 (3)  | 0.0765 (4)  | 0.0097 (2) | -0.0101 (3)  | 0.0026 (2)  |
| 01  | 0.0526 (9)  | 0.0425 (8)  | 0.1251 (18) | 0.0060 (7) | -0.0250 (10) | 0.0046 (9)  |
| O2  | 0.0922 (13) | 0.0609 (10) | 0.0653 (12) | 0.0257 (9) | -0.0039 (10) | -0.0025 (9) |
| O3  | 0.0507 (9)  | 0.0505 (9)  | 0.0989 (15) | 0.0043 (7) | 0.0056 (9)   | 0.0139 (9)  |
| N1  | 0.0419 (9)  | 0.0415 (9)  | 0.0829 (15) | 0.0082 (8) | -0.0021 (9)  | 0.0104 (9)  |
| C1  | 0.0470 (11) | 0.0416 (11) | 0.0643 (15) | 0.0114 (9) | -0.0012 (10) | 0.0077 (10) |

| C2  | 0.0514 (13) | 0.0562 (14) | 0.0809 (19) | 0.0114 (10) | 0.0121 (12)  | 0.0204 (12)  |
|-----|-------------|-------------|-------------|-------------|--------------|--------------|
| C3  | 0.0690 (16) | 0.0765 (17) | 0.0723 (18) | 0.0323 (14) | 0.0171 (14)  | 0.0148 (14)  |
| C4  | 0.0729 (16) | 0.0553 (13) | 0.0631 (16) | 0.0277 (12) | -0.0078 (13) | 0.0007 (11)  |
| C5  | 0.0656 (15) | 0.0402 (12) | 0.0769 (18) | 0.0068 (10) | 0.0027 (13)  | 0.0069 (11)  |
| C6  | 0.0552 (13) | 0.0447 (12) | 0.0689 (16) | 0.0082 (10) | 0.0109 (12)  | 0.0075 (11)  |
| C7  | 0.0431 (11) | 0.0459 (12) | 0.0637 (15) | 0.0089 (9)  | 0.0024 (10)  | -0.0040 (10) |
| C8  | 0.0419 (11) | 0.0478 (11) | 0.0555 (14) | 0.0112 (9)  | 0.0009 (9)   | -0.0070 (9)  |
| C9  | 0.0425 (12) | 0.0564 (14) | 0.092 (2)   | 0.0087 (10) | 0.0021 (12)  | 0.0037 (13)  |
| C10 | 0.0430 (12) | 0.0755 (17) | 0.110 (3)   | 0.0201 (12) | -0.0022 (14) | 0.0012 (16)  |
| C11 | 0.0653 (16) | 0.0690 (16) | 0.082 (2)   | 0.0296 (13) | -0.0142 (14) | -0.0009 (14) |
| C12 | 0.0683 (17) | 0.0810 (18) | 0.082 (2)   | 0.0226 (14) | 0.0032 (15)  | 0.0251 (15)  |
| C13 | 0.0474 (12) | 0.0766 (17) | 0.0776 (19) | 0.0194 (12) | 0.0079 (12)  | 0.0196 (14)  |
| Cl2 | 0.1041 (6)  | 0.0891 (5)  | 0.1031 (7)  | 0.0515 (5)  | 0.0222 (5)   | 0.0280 (4)   |
| S2  | 0.0791 (4)  | 0.0521 (3)  | 0.0653 (4)  | 0.0152 (3)  | 0.0167 (3)   | 0.0026 (3)   |
| 04  | 0.0882 (14) | 0.0571 (10) | 0.1117 (17) | 0.0069 (10) | 0.0492 (13)  | 0.0039 (10)  |
| O5  | 0.1332 (19) | 0.0795 (13) | 0.0582 (12) | 0.0377 (13) | -0.0030 (12) | -0.0003 (10) |
| 06  | 0.0592 (10) | 0.0560 (10) | 0.1145 (17) | 0.0062 (8)  | 0.0011 (11)  | -0.0095 (10) |
| N2  | 0.0630 (12) | 0.0497 (11) | 0.0712 (15) | 0.0112 (9)  | 0.0106 (11)  | -0.0010 (10) |
| C14 | 0.0524 (12) | 0.0488 (12) | 0.0573 (14) | 0.0079 (10) | 0.0075 (10)  | -0.0066 (10) |
| C15 | 0.0537 (13) | 0.0574 (14) | 0.0719 (18) | 0.0057 (11) | -0.0020 (12) | -0.0157 (12) |
| C16 | 0.0584 (14) | 0.0792 (18) | 0.0644 (17) | 0.0228 (13) | -0.0065 (12) | -0.0102 (13) |
| C17 | 0.0597 (14) | 0.0617 (14) | 0.0651 (16) | 0.0240 (11) | 0.0123 (12)  | 0.0038 (12)  |
| C18 | 0.0587 (14) | 0.0476 (13) | 0.0794 (18) | 0.0046 (10) | 0.0034 (13)  | -0.0032 (12) |
| C19 | 0.0509 (12) | 0.0560 (13) | 0.0666 (16) | 0.0079 (10) | -0.0058 (11) | -0.0064 (11) |
| C20 | 0.0540 (13) | 0.0533 (13) | 0.0672 (16) | 0.0113 (11) | -0.0038 (12) | 0.0062 (11)  |
| C21 | 0.0512 (12) | 0.0522 (12) | 0.0601 (15) | 0.0141 (10) | -0.0022 (11) | 0.0103 (10)  |
| C22 | 0.0571 (14) | 0.0602 (15) | 0.094 (2)   | 0.0124 (12) | 0.0125 (14)  | 0.0022 (14)  |
| C23 | 0.0749 (18) | 0.0602 (16) | 0.107 (3)   | 0.0148 (14) | 0.0140 (17)  | -0.0050 (15) |
| C24 | 0.0730 (17) | 0.0806 (19) | 0.075 (2)   | 0.0314 (15) | 0.0052 (15)  | 0.0013 (15)  |
| C25 | 0.0692 (17) | 0.082 (2)   | 0.096 (2)   | 0.0165 (15) | 0.0253 (17)  | 0.0109 (17)  |
| C26 | 0.0694 (17) | 0.0589 (15) | 0.100(2)    | 0.0066 (13) | 0.0172 (16)  | 0.0088 (15)  |

### Geometric parameters (Å, °)

| Cl1—C4 | 1.737 (3)   | Cl2—C17 | 1.734 (3)  |
|--------|-------------|---------|------------|
| S1—O2  | 1.424 (2)   | S2—O5   | 1.415 (2)  |
| S1—O1  | 1.4251 (18) | S2—O4   | 1.425 (2)  |
| S1—N1  | 1.645 (2)   | S2—N2   | 1.653 (2)  |
| S1—C1  | 1.753 (2)   | S2—C14  | 1.753 (3)  |
| O3—C7  | 1.208 (3)   | O6—C20  | 1.204 (3)  |
| N1—C7  | 1.388 (3)   | N2—C20  | 1.378 (3)  |
| N1—H1N | 0.836 (17)  | N2—H2N  | 0.834 (17) |
| C1—C2  | 1.374 (4)   | C14—C19 | 1.379 (3)  |
| C1—C6  | 1.387 (3)   | C14—C15 | 1.383 (4)  |
| C2—C3  | 1.373 (4)   | C15—C16 | 1.368 (4)  |
| С2—Н2  | 0.9300      | С15—Н15 | 0.9300     |
| C3—C4  | 1.370 (4)   | C16—C17 | 1.373 (4)  |
| С3—Н3  | 0.9300      | С16—Н16 | 0.9300     |
| C4—C5  | 1.365 (4)   | C17—C18 | 1.372 (4)  |

| C5—C6     | 1.382 (3)   | C18—C19     | 1.386 (4)   |
|-----------|-------------|-------------|-------------|
| С5—Н5     | 0.9300      | C18—H18     | 0.9300      |
| С6—Н6     | 0.9300      | С19—Н19     | 0.9300      |
| С7—С8     | 1.480 (3)   | C20—C21     | 1.486 (4)   |
| C8—C13    | 1.375 (3)   | C21—C22     | 1.375 (4)   |
| C8—C9     | 1.380 (3)   | C21—C26     | 1.381 (4)   |
| C9—C10    | 1.372 (4)   | C22—C23     | 1.376 (4)   |
| С9—Н9     | 0.9300      | C22—H22     | 0.9300      |
| C10-C11   | 1.355 (4)   | C23—C24     | 1.368 (4)   |
| C10—H10   | 0.9300      | С23—Н23     | 0.9300      |
| C11—C12   | 1.370 (4)   | C24—C25     | 1.361 (4)   |
| C11—H11   | 0.9300      | C24—H24     | 0.9300      |
| C12—C13   | 1.379 (4)   | C25—C26     | 1.375 (4)   |
| C12—H12   | 0.9300      | С25—Н25     | 0.9300      |
| С13—Н13   | 0.9300      | C26—H26     | 0.9300      |
| O2—S1—O1  | 119.10 (13) | O5—S2—O4    | 119.32 (15) |
| O2—S1—N1  | 110.02 (12) | O5—S2—N2    | 110.30 (14) |
| O1—S1—N1  | 103.39 (10) | O4—S2—N2    | 103.33 (12) |
| O2—S1—C1  | 109.16 (11) | O5—S2—C14   | 108.61 (12) |
| 01—S1—C1  | 108.42 (12) | O4—S2—C14   | 108.37 (13) |
| N1—S1—C1  | 105.90 (11) | N2—S2—C14   | 106.11 (12) |
| C7—N1—S1  | 123.68 (17) | C20—N2—S2   | 123.63 (18) |
| C7—N1—H1N | 122.9 (19)  | C20—N2—H2N  | 123 (2)     |
| S1—N1—H1N | 112.3 (19)  | S2—N2—H2N   | 112 (2)     |
| C2—C1—C6  | 121.1 (2)   | C19—C14—C15 | 120.8 (2)   |
| C2—C1—S1  | 119.31 (18) | C19—C14—S2  | 119.9 (2)   |
| C6—C1—S1  | 119.5 (2)   | C15-C14-S2  | 119.27 (18) |
| C3—C2—C1  | 119.9 (2)   | C16-C15-C14 | 119.8 (2)   |
| С3—С2—Н2  | 120.1       | С16—С15—Н15 | 120.1       |
| С1—С2—Н2  | 120.1       | C14—C15—H15 | 120.1       |
| C4—C3—C2  | 118.9 (3)   | C15—C16—C17 | 119.2 (2)   |
| С4—С3—Н3  | 120.6       | C15-C16-H16 | 120.4       |
| С2—С3—Н3  | 120.6       | C17—C16—H16 | 120.4       |
| C5—C4—C3  | 122.0 (3)   | C18—C17—C16 | 121.9 (2)   |
| C5—C4—Cl1 | 119.9 (2)   | C18—C17—Cl2 | 119.4 (2)   |
| C3—C4—Cl1 | 118.1 (2)   | C16—C17—Cl2 | 118.7 (2)   |
| C4—C5—C6  | 119.6 (2)   | C17—C18—C19 | 118.9 (2)   |
| C4—C5—H5  | 120.2       | C17-C18-H18 | 120.5       |
| С6—С5—Н5  | 120.2       | C19—C18—H18 | 120.5       |
| C5—C6—C1  | 118.5 (2)   | C14—C19—C18 | 119.3 (2)   |
| С5—С6—Н6  | 120.7       | C14—C19—H19 | 120.3       |
| С1—С6—Н6  | 120.7       | C18—C19—H19 | 120.3       |
| O3—C7—N1  | 120.4 (2)   | O6—C20—N2   | 119.9 (3)   |
| O3—C7—C8  | 123.8 (2)   | O6—C20—C21  | 123.1 (2)   |
| N1—C7—C8  | 115.85 (19) | N2-C20-C21  | 117.0 (2)   |
| C13—C8—C9 | 118.9 (2)   | C22—C21—C26 | 118.1 (3)   |
| C13—C8—C7 | 123.6 (2)   | C22—C21—C20 | 124.5 (2)   |
| C9—C8—C7  | 117.5 (2)   | C26—C21—C20 | 117.4 (2)   |
| C10—C9—C8 | 120.2 (3)   | C21—C22—C23 | 120.3 (3)   |

| С10—С9—Н9       | 119.9        | C21—C22—H22     | 119.8       |
|-----------------|--------------|-----------------|-------------|
| С8—С9—Н9        | 119.9        | C23—C22—H22     | 119.8       |
| C11—C10—C9      | 120.6 (2)    | C24—C23—C22     | 120.9 (3)   |
| C11-C10-H10     | 119.7        | С24—С23—Н23     | 119.5       |
| C9—C10—H10      | 119.7        | С22—С23—Н23     | 119.5       |
| C10-C11-C12     | 120.1 (3)    | C25—C24—C23     | 119.3 (3)   |
| C10-C11-H11     | 119.9        | С25—С24—Н24     | 120.4       |
| C12—C11—H11     | 119.9        | С23—С24—Н24     | 120.4       |
| C11—C12—C13     | 119.8 (3)    | C24—C25—C26     | 120.1 (3)   |
| C11—C12—H12     | 120.1        | С24—С25—Н25     | 119.9       |
| С13—С12—Н12     | 120.1        | С26—С25—Н25     | 119.9       |
| C8—C13—C12      | 120.4 (2)    | C25—C26—C21     | 121.2 (3)   |
| C8—C13—H13      | 119.8        | С25—С26—Н26     | 119.4       |
| C12—C13—H13     | 119.8        | C21—C26—H26     | 119.4       |
| O2—S1—N1—C7     | 47.9 (2)     | O5—S2—N2—C20    | -56.1 (3)   |
| O1—S1—N1—C7     | 176.1 (2)    | O4—S2—N2—C20    | 175.3 (2)   |
| C1—S1—N1—C7     | -70.0 (2)    | C14—S2—N2—C20   | 61.3 (2)    |
| O2—S1—C1—C2     | 152.8 (2)    | O5—S2—C14—C19   | 18.5 (3)    |
| 01—S1—C1—C2     | 21.6 (2)     | O4—S2—C14—C19   | 149.5 (2)   |
| N1—S1—C1—C2     | -88.8 (2)    | N2—S2—C14—C19   | -100.1 (2)  |
| O2—S1—C1—C6     | -24.3 (2)    | O5—S2—C14—C15   | -158.2 (2)  |
| O1—S1—C1—C6     | -155.5 (2)   | O4—S2—C14—C15   | -27.2 (2)   |
| N1—S1—C1—C6     | 94.1 (2)     | N2—S2—C14—C15   | 83.3 (2)    |
| C6—C1—C2—C3     | 1.4 (4)      | C19—C14—C15—C16 | -0.1 (4)    |
| S1—C1—C2—C3     | -175.7 (2)   | S2-C14-C15-C16  | 176.5 (2)   |
| C1—C2—C3—C4     | -0.6 (4)     | C14—C15—C16—C17 | -0.7 (4)    |
| C2—C3—C4—C5     | -0.6 (4)     | C15—C16—C17—C18 | 1.5 (4)     |
| C2—C3—C4—Cl1    | 179.0 (2)    | C15—C16—C17—Cl2 | -179.2 (2)  |
| C3—C4—C5—C6     | 1.1 (4)      | C16—C17—C18—C19 | -1.3 (4)    |
| Cl1—C4—C5—C6    | -178.5 (2)   | Cl2—C17—C18—C19 | 179.3 (2)   |
| C4—C5—C6—C1     | -0.3 (4)     | C15—C14—C19—C18 | 0.2 (4)     |
| C2—C1—C6—C5     | -0.9 (4)     | S2-C14-C19-C18  | -176.4 (2)  |
| S1—C1—C6—C5     | 176.14 (19)  | C17—C18—C19—C14 | 0.5 (4)     |
| S1—N1—C7—O3     | 7.9 (4)      | S2—N2—C20—O6    | -3.1 (4)    |
| S1—N1—C7—C8     | -173.19 (17) | S2—N2—C20—C21   | 177.37 (18) |
| O3—C7—C8—C13    | 160.9 (3)    | O6—C20—C21—C22  | 172.9 (3)   |
| N1—C7—C8—C13    | -18.0 (4)    | N2-C20-C21-C22  | -7.6 (4)    |
| O3—C7—C8—C9     | -19.1 (4)    | O6—C20—C21—C26  | -6.7 (4)    |
| N1—C7—C8—C9     | 162.0 (2)    | N2—C20—C21—C26  | 172.9 (2)   |
| C13—C8—C9—C10   | 0.9 (4)      | C26—C21—C22—C23 | -0.5 (4)    |
| C7—C8—C9—C10    | -179.0 (3)   | C20—C21—C22—C23 | 179.9 (3)   |
| C8—C9—C10—C11   | -1.3 (5)     | C21—C22—C23—C24 | 0.6 (5)     |
| C9—C10—C11—C12  | 0.5 (5)      | C22—C23—C24—C25 | 0.0 (5)     |
| C10-C11-C12-C13 | 0.7 (5)      | C23—C24—C25—C26 | -0.6 (5)    |
| C9—C8—C13—C12   | 0.2 (4)      | C24—C25—C26—C21 | 0.7 (5)     |
| C7—C8—C13—C12   | -179.8 (3)   | C22—C21—C26—C25 | -0.1 (5)    |
| C11—C12—C13—C8  | -1.0 (5)     | C20—C21—C26—C25 | 179.5 (3)   |

Hydrogen-bond geometry (Å, °)

| D—H···A                                                                | <i>D</i> —Н | H···A    | $D \cdots A$ | D—H··· $A$ |
|------------------------------------------------------------------------|-------------|----------|--------------|------------|
| N1—H1N···O1 <sup>i</sup>                                               | 0.84 (2)    | 2.16 (2) | 2.967 (3)    | 161 (3)    |
| N2—H2N····O4 <sup>ii</sup>                                             | 0.83 (2)    | 2.15 (2) | 2.962 (3)    | 164 (3)    |
| Symmetry codes: (i) $-x$ , $-y$ , $-z$ ; (ii) $-x$ , $-y+1$ , $-z+1$ . |             |          |              |            |



Fig. 1



